The bivariate noncentral chi-square distribution - A compound distribution approach
نویسندگان
چکیده
This paper proposes the bivariate noncentral chi-square (BNC) distribution by compounding the Poisson probabilities with the bivariate central chi-square distribution. The probability density and cumulative distribution functions of the joint distribution of the two noncentral chi-square variables are derived for arbitrary values of the correlation coefficient, degrees of freedom(s), and noncentrality parameters. Computational procedures to calculate the upper tail probabilities as well as the percentile points for selected values of the parameters, for both equal and unequal degrees of freedom, are discussed. The graphical representation of the distribution for different values of the parameters are provided. Some applications of the distribution are outlined. 2010 Elsevier Inc. All rights reserved.
منابع مشابه
Inequalities for Noncentral Chi-square Distributions
Noncentral chi-square distributions play an important role in statistics. They occur for instance as exact or limiting distributions of test statistics under alternatives. To examine the power functions of such tests we come across the problem of comparing distribution functions of noncentral chi-square variables. In this section inequalities are presented, which make such a comparison possible...
متن کاملNoncentral Generalized Multivariate Beta Type Ii Distribution
• The distribution of the variables that originates from monitoring the variance when the mean encountered a sustained shift is considered — specifically for the case when measurements from each sample are independent and identically distributed normal random variables. It is shown that the solution to this problem involves a sequence of dependent random variables that are constructed from inde...
متن کاملMATHEMATICAL ENGINEERING TECHNICAL REPORTS Holonomic Gradient Method for Distribution Function of a Weighted Sum of Noncentral Chi-square Random Variables
We apply the holonomic gradient method to compute the distribution function of a weighted sum of independent noncentral chi-square random variables. It is the distribution function of the squared length of a multivariate normal random vector. We treat this distribution as an integral of the normalizing constant of the Fisher-Bingham distribution on the unit sphere and make use of the partial di...
متن کاملHolonomic gradient method for distribution function of a weighted sum of noncentral chi-square random variables
We apply the holonomic gradient method to compute the distribution function of a weighted sum of independent noncentral chi-square random variables. It is the distribution function of the squared length of a multivariate normal random vector. We treat this distribution as an integral of the normalizing constant of the Fisher-Bingham distribution on the unit sphere and make use of the partial di...
متن کاملMunich Personal RePEc Archive Normal versus Noncentral Chi - square Asymptotics of Misspecified Models
The noncentral chi-square approximation of the distribution of the likelihood ratio (LR) test statistic is a critical part of the methodology in structural equations modeling (SEM). Recently, it was argued by some authors that in certain situations normal distributions may give a better approximation of the distribution of the LR test statistic. The main goal of this paper is to evaluate the va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 217 شماره
صفحات -
تاریخ انتشار 2011